Early Forecasting Hydrological and Agricultural Droughts in the Bouregreg Basin Using a Machine Learning Approach
نویسندگان
چکیده
Water supply for drinking and agricultural purposes in semi-arid regions is confronted with severe drought risks, which impact socioeconomic development. However, early forecasting of indices crucial water resource management to implement mitigation measures against its consequences. In this study, we attempt develop an integrated approach forecast the hydrological a zone ensure sustainable agropastoral activities at watershed scale reservoir scale. To that end, used machine learning algorithms annual SPEI embedded it into by implementing correlation between reservoir’s inflow SPEI. The results showed starting from December can so NSE ranges 0.62 0.99 during validation process. proposed allows decision makers not only manage order pastoral “sustainability scale” but also
منابع مشابه
Hydrological forecasting on the Great Lakes basin using MESH
A. Pietroniro, V. Fortin, N. Kouwen, C. Neal, R. Turcotte, B. Davison, D. Verseghy, E. D. Soulis, R. Caldwell, N. Evora, and P. Pellerin National Water Research Institute, Environment Canada, Canada Numerical Weather Prediction Research, Meteorological Research Division, Environment Canada, Canada University of Waterloo, Canada Water Survey of Canada, Environment Canada, Canada Centre d’experti...
متن کاملthe relationship between language and social capital in ilami kurdish: a sociopragmatic approach
چکیده زبان به عنوان یک وسیله در ایجاد و بازسازی سرمایه اجتماعی در چند دهه گذشته مورد توجه بوده است. اگر چه درباره سرمایه اجتماعی و سازه های مربوط به آن زیاد نوشته شده است ولی خیلی کم بر روی اینکه چطور زبان می تواند باعث ایجاد اعتماد یا بی اعتمادی بشود مطالعه ای انجام شده است. این مطالعه به منظور تحقق دو هدف انجام گرفته است. اول تلاش خواهد شد تا یک گونه شناسی از واژگانی که مردم کرد زبان شهر ا...
15 صفحه اولForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملChanges and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China
The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations ...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2022
ISSN: ['2073-4441']
DOI: https://doi.org/10.3390/w15010122